
 NEO PLUGIN

 P a g e 1 | 41

NEO PLUGIN
USER MANUAL

VERSION 1.0.3.2 – APRIL 7, 2019

Contents
I. What is Neo Plugin? .. 2

II. Advantages of NeoPlugin .. 3

III. How to Obtain the CRM Solution .. 3

IV. How to Install the CRM Solution ... 3

V. How to Create a New Plugin .. 4

VI. Execution Script Syntax ... 13

VII. List of Build-In Functions ... 17

▪ Math Functions.. 17

▪ String Functions ... 18

▪ XML Functions ... 19

▪ Date/Time Functions ... 21

▪ Flow Functions ... 21

▪ CRM Data Retrieval & Manipulation Functions .. 22

▪ CRM Plugin Functions .. 22

▪ Other Functions ... 22

VIII. Example Use Cases .. 23

IX. Export and Import Neo Plugins ... 35

X. How to Get Support for Neo Plugin... 41

 NEO PLUGIN

 P a g e 2 | 41

I. What is Neo Plugin?

Neo Plugin is an add-on for Dynamics 365, which enables to create Plugin in Dynamics 365 without going

through code development and plugin registration process.

Neo Plugin allows users to create a Dynamics 365 plugin easily; run in server-side either synchronously,

or asynchronously, being triggered with methods: Create, Update, Delete, SetState, etc, and with steps:

Pre-Validation, Pre-Operation and Post-Operation.

Neo Plugin provides a middle layer, using a simple scripting language to define what the plugin will do.

The execution script is entered into a text area in the Dynamics 365 UI, and when the record is saved,

the execution script is verified syntactically and semantically. If there is any error in the script, for

example an input or output attribute does not actually exist in the entity, an error message pops up, and

user should fix the script to be able to proceed.

Besides regular mathematical operations, Neo Plugin provides a set of functions that allow users to

achieve more complex tasks. The list of built-in functions can be found in Section VI of this document.

Please keep in mind that this list is not final, and we are open to any suggestion that you think it will

improve the tool.

Of course, there are some limitations to what you can do by using Neo Plugin. Section VII of this

document gives some set of example use cases, which will give you some idea about what you can do

with Neo Plugin and what you cannot. If you are not sure whether Neo Plugin can achieve a specific task

or not, you can always contact us and we will provide you some information about how to do it, if it is

possible.

Triggers of the plugin are setup in the CRM form. Neo Plugin UI provides all features of the regular CRM

plugin triggers.

Executions of Neo Plugins are logged within CRM for debugging and error reporting purposes. It is also

possible to avoid logging successful executions of the plugin to reduce space usage by setting the “Log

Policy” field to “Log Errors Only”, in the plugin setup.

This tool is very useful, especially when you need to do some mathematical calculations based on some

input CRM fields and write results back to some CRM fields. By using this tool, you can easily convert

your legacy excel worksheet pricing formulas into CRM plugins just by using the CRM UI.

 NEO PLUGIN

 P a g e 3 | 41

II. Advantages of NeoPlugin
Neo Plugin has several advantages over other alternatives:

• All setups of the plugins are done via CRM UI.

• Complex operations can be achieved with NeoPlugin that cannot be done with CRM Workflows

or Business Rules, like:

o Retrieve multiple entity records by constructing fetchXml on the fly.

o Looping with foreach keyword over multiple entity records to create, update, delete,

etc.

o Looping with while keyword

o Conditional value assignment using if-then-else keywords.

o Use pre-image values.

o Call web services.

o Use local variables to achieve complex calculations.

o Use mathematical functions like log, sqrt, round, etc.

o Use date/time functions like min, max, dateDiff, etc.

o Use string functions like length, substring, trim, padLeft, etc.

o Use conditional actions.

o Check user roles.

o Check team membership

• Very simple scripting language with rich built-in functions.

• Execution logs are stored with details.

• Easily export and import NeoPlugins between CRM organizations.

III. How to Obtain the CRM Solution

Neo Plugin is delivered as a managed CRM solution file when you register for FREE product from our

website, https://www.neoxrm.com. At the time of registration, you need to provide the Dynamics 365

organization unique name that you want to install the solution. The delivered solution file will only work

for this specific CRM instance. If you have provided a wrong Dynamics 365 organization name, please

contact to NeoXrm support team via email support@neoxrm.com or phone 1-844-NEOXRM1.

IV. How to Install the CRM Solution

The next step is to import the downloaded Dynamics 365 solution into your environment. You need to

have system admin or system customizer role to be able to import the Dynamics 365 solution in general.

Once the solution is imported successfully, your Neo Plugin is ready to use.

https://www.neoxrm.com/
mailto:support@neoxrm.com

 NEO PLUGIN

 P a g e 4 | 41

V. How to Create a New Plugin

Once the Neo Plugin solution is imported into Dynamics 365, Neo Plugins menu item is listed under the

Settings -> NeoXrm section.

Click on the Neo Plugins button, the opened view will list all plugins.

Click on the New button to create a new plugin. It will open a new Neo Plugin form.

 NEO PLUGIN

 P a g e 5 | 41

Enter a name, select the entity from the optionset, select a solution from the optionset, provide a

description and provide an execution script. Click on the SAVE button to create the plugin. Remember

that the Entity and Solution fields cannot be changed after creation.

Click on the INSERT ENTITY ATTRIBUTE button to add a entity attribute into execution script as input or

output variable.

 NEO PLUGIN

 P a g e 6 | 41

For some plugin messages (e.g. Update), pre-image value is also available. Attribute names starting with

$ sign means reading the previous value of that attribute before the update.

For Reference type (Lookup) attributes, attributes of the referenced record can also be used in the

execution.

 NEO PLUGIN

 P a g e 7 | 41

In the above example where the Entity is account, @primarycontactid.emailaddress1 brings the email

address value of the primary contact of the account.

Reading the referenced entity values is possible up-to three levels.

It is possible to use referenced attributes for pre-event values as well.

For example, $primarycontactid.emailaddress1 is the email address value of the previous primary contact,

when plugin is triggered with update of primary contact of the account.

 NEO PLUGIN

 P a g e 8 | 41

Using the INSERT FUNCTION button, one of the functions can be inserted into execution script, by

clicking on the function name.

Clicking on the VERIFY SCRIPT button verifies the script for syntax and entity attribute names and shows

the error.

 NEO PLUGIN

 P a g e 9 | 41

Once the plugin record is created, Triggers section becomes visible to allow adding triggers to the plugin.

 NEO PLUGIN

 P a g e 10 | 41

Click on the “Add New Trigger” button. A new row will be added to grid. Provide information in the grid.

Multiple triggers can be added for the plugin.

 NEO PLUGIN

 P a g e 11 | 41

Click on the Save All button.

Trigger will be created but not activated yet. Click on the Activate button to activate it. Once the trigger

is activated, the execution script field becomes read only, meaning that to be able to edit execution

scripts all active triggers should be deactivated.

 NEO PLUGIN

 P a g e 12 | 41

Once activated, a trigger cannot be edited. It needs to be deactivated to be able to make changes.

Now, you are done with your plugin creation and you can start testing it.

 NEO PLUGIN

 P a g e 13 | 41

VI. Execution Script Syntax

Execution script is a list of statements separated with semi-column. Statements are executed in order of

appearance. There are several types of statements.

1- CRM Input Reading: Reads the CRM attribute value and assign to a variable.

income = @annualincome;

This line reads the CRM attribute (annualincome) value and assigns to the variable income.

Please note that variable declaration is implicit, meaning that first usage of a variable name on the

left side of an equation declares a new variable and its type is determined automatically based on

assigned values.

2- Variable manipulation:

credit=income*3.85;

This line declares a new variable with name credit and assign a value to it by multiplying another

variable income with 3.85.

Besides four mathematical operations, built-in functions can also be used to manipulate variable

values. See section VI for list of available functions.

lastUpdateDate = min(@modifiedon, @neo_activiydate);

It is also possible to use conditional assignment (if-then-else) to assign variable value based on the
first satisfying condition.

customerSize =

if(@revenue>=1000000000) then "Large Enterprise"

if(@revenue>=100000000) then "Medium Enterprise"

if(@revenue>=10000000) then "Small Enterprise"

if(@revenue>=1000000) then "Medium-Sized Business"

else "Small Business";

3- Function execution: This type of statements do not change any variable value but executes some

actions, for example running a CRM workflow. They can also be called from conditional expressions.

if (@revenue < 100000) {

 throw("Revenue cannot be less than $100,000");

}

This statement stops the plugin execution in some condition and shows CRM user an error message

if registered with a synchronous trigger.

 NEO PLUGIN

 P a g e 14 | 41

if (@revenue > 1000000000) {

 runwf("Email Large Enterprise Territory Exec WF", account);

}

This statement runs a CRM workflow for the given account record, if the condition satisfies.

4- CRM outputs: Updates CRM attribute values.

@creditlimit = credit;

The contact entity creditlimit attribute is updated with the value of credit variable. Please note that

actual update of the attribute does happen at the very latest phase of the plugin execution. For this

reason, even if you assign a value to the CRM attribute output, reading the same attribute value at

later statement as CRM input will still return the initial value of the attribute.

Consider the below simple example.

@revenue = 100000;

trace("Revenue is " + @revenue);

Assume that the current value of the annual revenue of an account is $3,000,000. That is what we

see in the execution log trace:

Input count: 1

CrmInput[Post]: revenue(Decimal)

Variable count: 0

CrmOutput count: 1

CrmOutput: revenue(Money)

Input [post] value: revenue = 3000000.0000

Executing statement: @revenue = 100000

Output value: revenue = 100000

Executing statement: trace("Revenue is " + @revenue)

Revenue is 3000000.0000

Executed method: neo.xrm.neoplugin.logic.function.TraceMethod

Notice that it prints the revenue as 3000000, the current value in the account record, not 10000, the

next value to be assigned.

If you want to use the updated value in later stages of the execution, you need to assign it to a

variable, instead of CRM attribute. CRM attribute assignments are used only for setting current

entity attribute values which happens at the very latest stage of the execution, after all statements

are executed.

 NEO PLUGIN

 P a g e 15 | 41

5- Branching with if-else keywords: By using if conditions, multiple statements can be executed

conditionally.

fetchXml = "…";

contactList = getEntityList(fetchXml);

if(contactList.Count > 0 && @primarycontactid == null)

{

 firstContact = contactList.First;

 @primarycontactid = firstContact.contactid;

}

else

{

 trace("no contact found");

}

6- Looping with while keyword

index = 0;

while(index < 10)

{

 trace("index = " + index) ;

 index = index + 1;

}

7- Looping with foreach keyword: Entity lists or string arrays can be looped over for each element in

the list.

fetchXml =

 "<fetch version='1.0' output-format='xml-platform' mapping='logical'

distinct='false'>

 <entity name='contact'>

 <attribute name='contactid' />

 <filter type='and'>

 <condition attribute='parentcustomerid' operator='eq' value='" +

@parentcustomerid + "' />

 </filter>

 <order attribute='createdon' descending='true' />

 </entity>

 </fetch>";

contactList = getEntityList(fetchXml);

foreach(contact in contactList)

{

 update("contact", contact.contactid,

 "paymenttermscode", paymenttermscode);

}

 NEO PLUGIN

 P a g e 16 | 41

nameArray = ["John", "Smith", "Jane", "Jennifer"];

foreach(name in nameArray)

{

 trace("Name of the person is " + name);

}

Looping over string array can also be achieved by using the while loop.

trace("The length of the name array is " + nameArray.Count);

trace("The first name in the array is " + nameArray.First);

trace("The last name in the array is " + nameArray.Last);

index = 0;

while(index < nameArray.Count)

{

 trace("A name from the array is " + nameArray.Item(index));

 index = index + 1;

}

 NEO PLUGIN

 P a g e 17 | 41

VII. List of Build-In Functions
▪ Math Functions

abs(number)
 returns absolute value of a given number

ave(number1, number2, …)
 returns average of given numbers

ceiling(number)
 returns the least integer greater than or equal to a given number

floor(number)
 returns the greatest integer less than or equal to a given number

log(number, base)
 returns mathematical logarithmic value of given number in given base.

max(number1, number2, …)
 returns the maximum of given numbers

min(number1, number2, …)
 returns the minimum of given numbers

parseDouble(string)
 returns double number value of a given string

parseInt(string)
 returns integer number value of a given string

pow(number, power)
 returns mathematical power value of a given number in given power.

round(number, decimals)
 rounds and returns the given number to a specified number of digits

sqrt(number)
 returns mathematical square-root value of a given number.

 NEO PLUGIN

 P a g e 18 | 41

▪ String Functions

endsWith(string, searchString)
 returns true if a given string ends with a given search string.

htmlDecode(text)
 returns html decoded version a given string

htmlEncode(text)
 returns html encoded version a given string

newLine()
 returns a platform specific new-line character

indexOf(string, searchString, [index])
 returns the position of the first occurrence of a specified value in a string.

length(string)
 returns the length of a given string

padLeft(string, padchar, length)
 returns a new string that is padded with leading padChar characters so that its
total length is length characters

padRight(string, padchar, length)
 returns a new string that is padded with following padChar characters so that
its total length is length characters

replace(string, oldText, newText)
 returns a new string after replacing the old text with new one.

startsWith(text, search)
 returns true if a given string starts with a given search string.

split(string, separator)
 splits a string into an array of strings using the specified separator and
returns the string array.

substring(string, start, length)

 returns the substring of a given string starting at the start position with

given length.

toLower(string)
 returns all lower-case version of a given string

toUpper(string)
 returns all upper-case version of a given string

trim(text)
 returns a string with the leading and trailing white-spaces are removed from a
given string.

 NEO PLUGIN

 P a g e 19 | 41

▪ XML Functions

getXmlAttribute(xml, xpath, attributeName, [index])
 returns an attribute value in a given xml string, with given xpath.

responseXml = "<response resultCount='2'>

 <company score='0.99'>

 <id>80627426</id>

 <name>Ozgencil Software LLC</name>

 <phone>1-844-636-9761</phone>

 <website>www.neoxrm.com</website>

 <address>

 <country>USA</country>

 <state>NJ</state>

 <city>Mahwah</city>

 <postalcode>07430</postalcode>

 </address>

 </company>

 <company score='0.12'>

 <id>12345678</id>

 <name>Ozgencil Carpentry LLC</name>

 <phone>1-555-555-5555</phone>

 <address>

 <country>USA</country>

 <state>NY</state>

 <city>Syracuse</city>

 <postalcode>13205</postalcode>

 </address>

 </company>

 </response>";

E.g.: getXmlAttribute(responseXml, "response/company", "score") return 0.99 and
getXmlAttribute(responseXml, "response/company", "score", 1) returns 0.12

getXmlAttributeWithNS(xml, namespaceAlias, namespaceValue, xpath, attributeName,

[index])
 returns an attribute value in a given xml string, with given namespace and

xpath.

responseXml = "<response resultCount='2'

xmlns='http://schemas.datacontract.org/2004/07/PropertyWS'>

 <company score='0.99'>

 <id>80627426</id>

 <name>Ozgencil Software LLC</name>

 <phone>1-844-636-9761</phone>

 <website>www.neoxrm.com</website>

 <address>

 <country>USA</country>

 <state>NJ</state>

 <city>Mahwah</city>

 <postalcode>07430</postalcode>

 </address>

 </company>

 <company score='0.12'>

 <id>12345678</id>

 <name>Ozgencil Carpentry LLC</name>

 <phone>1-555-555-5555</phone>

 <address>

http://schemas.datacontract.org/2004/07/PropertyWS

 NEO PLUGIN

 P a g e 20 | 41

 <country>USA</country>

 <state>NY</state>

 <city>Syracuse</city>

 <postalcode>13205</postalcode>

 </address>

 </company>

 </response>";

E.g.: getXmlAttributeWithNS(responseXml, "i",
"http://schemas.datacontract.org/2004/07/PropertyWS", "/i:response//i:company",
"score") return 0.99

getXmlElementCount(xml, xpath)
 returns number of occurrences of a given xpath in a given xml string.
E.g.: getXmlElementCount(responseXml, "response/company") returns 2.

getXmlElementCountWithNS(xml, namespaceAlias, namespaceValue, xpath)
 returns number of occurrences of an element searched with a given namespace and

xpath.
E.g.: getXmlElementCountWithNS(responseXml, "i",

"http://schemas.datacontract.org/2004/07/PropertyWS", "/i:response//i:company")
returns 2.

getXmlElementInnerText(xml, xpath, [index])

returns inner text of an xml node in a given xml string searched with a given
xpath. This function is generally used to get text of a node.

E.g: getXmlElementInnerText(responseXml,"response/company/name") returns "Ozgencil
Software LLC" while getXmlElementInnerText(responseXml,"response/company/name", 1)
returns "Ozgencil Carpentry LLC"

getXmlElementInnerTextWithNS(xml, namespaceAlias, namespaceValue, xpath, [index])

returns inner text of an xml node in a given xml string searched with a given
xpath. This function is generally used to get text of a node.

E.g: getXmlElementInnerTextWithNS(responseXml, "i",
"http://schemas.datacontract.org/2004/07/PropertyWS",
"/i:response//i:company//i:name") returns "Ozgencil Software LLC" while
getXmlElementInnerTextWithNS(responseXml, "i",
"http://schemas.datacontract.org/2004/07/PropertyWS",
"/i:response//i:company//i:name", 1) returns "Ozgencil Carpentry LLC"

getXmlElementOuterText(xml, xpath, [index])
getXmlElementOuterTextWithNS(xml, namespaceAlias, namespaceValue, xpath, [index])

returns outer text of an xml node in a given xml string searched with a given
xpath. This function is generally used to get the whole node for further
processing. E.g: getXmlElementOuterText(responseXml,"response/company/address")
returns the whole address node:

 <address>

 <country>USA</country>

 <state>NJ</state>

 <city>Mahwah</city>

 <postalcode>07430</postalcode>

 </address>

http://schemas.datacontract.org/2004/07/PropertyWS
http://schemas.datacontract.org/2004/07/PropertyWS
http://schemas.datacontract.org/2004/07/PropertyWS
http://schemas.datacontract.org/2004/07/PropertyWS

 NEO PLUGIN

 P a g e 21 | 41

▪ Date/Time Functions

dateDiff(datePart, startDate, endDate)
 returns the difference between two dates in terms of given date part ("year",
"month", "week", "day", "hour", "minute", "second", "millisecond").
E.g.: dateDiff("hour", @createdon, utcNow()) returns total number of hours since
the record was created.

getDatePart(datePart, date)
 returns the date part ("year", "month", "week", "day", "hour", "minute",
"second") of a given date in numbers. E.g.: getDatePart("year", utcToday())
returns 2019.

max(date1, date2, …)
 returns maximum of given dates.

min(date1, date2, …)
 returns minimum of given dates.

parseDate(string)
 parses a given string and returns its date/time value.

utcNow()
 returns the current time in Coordinated Universal Time (UTC) time zone.

utcToday()
 returns the current date in Coordinated Universal Time (UTC) time zone.

▪ Flow Functions

end(message)
 ends the plugin processing and logs a given message to trace log.

foreach(item in list) { statement(s) }
 loops over the given list (must be either entity list or string array) and
executes given statements for each item in the list

if(condition) { statement(s) } else { statement(s) }
 executes statements based on condition

throw(message)
 ends the plugin processing by throwing a InvalidPluginExecution exception. If
plugin trigger is synchronous, all database changes are reverted back. Notice that
plugin execution record is not created in that case.

trace(message)
 adds a message to trace log.

while(condition) { statement(s) }
 executes given statements as long as the condition is true. Conditions is
checked at the beginning and after each iteration.

 NEO PLUGIN

 P a g e 22 | 41

▪ CRM Data Retrieval & Manipulation Functions
addBCCRecipient(emailId, recipientRef)
addCCRecipient(emailId, recipientRef)
addTORecipient(emailId, recipientRef)
addToTeam(teamName, userRef)

associate(relationshipName, record1Ref, record2Ref)
attachTextFile(emailId, filename, textFileContentString)
attachBinaryFile(emailId, filename, binaryFileContent)
create(entityName, attributeName1, attributeValue1, …)
delete(entityName, recordId)

disassociate(relationshipName, record1Ref, record2Ref)
entityRef(entityName, recordId)
getEntity(fetchXml)
getEntityList(fetchXml)
hasRole(roleName, userId)
isMemberOfTeam(teamName, userId)
lookup(entityName, attributeName1, attributeValue1, …)
removeFromTeam(teamName, userId)
retrieve(entityName, recordId, attributeName1, attributeName2, …)
runwf(workflowName, recordId, ignoreError)
sendEmail(emailId, ignoreError)
setOwner(recordRef, ownerId)
setStateStatus(entityRef, statecode, statuscode)
update(entityName, recordId, attributeName1, attributeValue1, …)

▪ CRM Plugin Functions
getCurrentRecord()
getCurrentUser()
getDepth()
getLatestError()
getMessageName()
getStepMode()
getStepStage()

▪ Other Functions
callWebService(webserviceURL)
 makes a GET based web call to a given URL and returns the response string. E.g.:
callWebService("https://www.neoxrm.com/account/time.aspx") returns a string like
"2019-01-01 18:11:30 UTC"

callWebServiceForBinary(webserviceURL)
 makes a GET based web call to a given URL and returns the response as binary
(byte array). E.g.:
pdfContent = callWebService("https://www.neoxrm.com/pdf/NeoPluginUserManual.pdf")
returns a binary of PDF file. This binary can be attached to an email, with a
command like: attachBinaryFile(emailId, "usermanual.pdf", pdfContent)

 NEO PLUGIN

 P a g e 23 | 41

VIII. Example Use Cases
Below use-case examples will help you better understand the capabilities of Neo Plugin, what you can

do with it and what you cannot do with it. We will start with easy examples and then continue to

demonstrate examples that are more complex.

Use Case #1

Entity Contact

Task Set the credit limit (money), based on annual income (money) with factor 3.85.

Trigger(s) 1) Synchronous, Post-Operation, On Create
2) Synchronous, Post-Operation, On Update (of annual income)

Execution
Script

income=@annualincome;

credit=income*3.85;

@creditlimit=credit;

Remarks

Use Case #2

Entity Account

Task Set customer size (optionset), based on revenue (money)

Trigger(s) 1) Synchronous, Post-Operation, On Create
2) Synchronous, Pre-Validation, On Update (of revenue)

Execution
Script

revenue=@revenue;

customerSize=

if(revenue>=1000000000) then "Large Enterprise"

if(revenue>=100000000) then "Medium Enterprise"

if(revenue>=10000000) then "Small Enterprise"

if(revenue>=1000000) then "Medium-Sized Business"

else "Small Business";

@customersizecode=customerSize;

Remarks In this example, optionset type attribute is set based on optionset label. This is
especially useful when editor does not know actual optionset value for each label. It is
also possible to use integer value of option instead of its label. Neo Plugin is smart
enough to determine if assigned value is integer or text and handles both input cases
accordingly.

 NEO PLUGIN

 P a g e 24 | 41

Use Case #3

Entity Opportunity Product

Task Determine tax rate based on state/province code (text) of account of opportunity, and
set the new total amount (money) by adding the tax to the extended amount (money).
Exclude some products from the tax. (PS has no tax)

Trigger(s) 1) Synchronous, Post-Operation, On Update (baseamount,manualdiscountamount)

Execution
Script

stateCode=@opportunityid.parentaccountid.address1_stateorprovince;

productCode=@productid.productnumber;

base=@baseamount;

discount=@manualdiscountamount;

amount=round(base-discount);

taxRate=

if(stateCode="NJ") then 0.07

if(stateCode="NY") then 0.0825

if(stateCode="PA") then 0.05

if(stateCode="CT") then 0.095

if(stateCode="VR") then 0.065

else 0;

taxRate = if(productCode="PS") then 0 else taxRate;

taxAmount=amount*taxRate;

@tax=taxAmount;

Remarks This example demonstrates reading referenced entity values from CRM. We have
followed the chain from opportunity product to opportunity, and then account, and
read the state or province text field value of account, with a single line:
stateCode=@opportunityid.parentaccountid.address1_stateorprovince

 NEO PLUGIN

 P a g e 25 | 41

Use Case #4

Entity Account

Task Assume you have a custom entity called Country. In account entity, you use a lookup
Country field (neo_countryid), instead of OOB address1_country text field, to ensure
data accuracy. You also have a third party solution, let's say D&B integrator, which
imports the accounts from D&B, but it sets the OOB address1_country field, instead of
your custom country lookup field.
The task is to set the country lookup field (neo_countryid), based on OOB country field
(address1_country), when account is created or country field updated.

Trigger(s) 1) Synchronous, Post-Operation, On Create
2) Synchronous, Post-Operation, On Update (address1_country)

Execution
Script

if(@address1_country == $address1_country) {

 end("country not really changed");

}

if (@address1_country == @neo_countryid.neo_name) {

 end("countries are same already");

}

// search for an active country by name

country = lookup("neo_country","neo_name", @address1_country,

 "statecode", 0);

// update country lookup field, if country record was found

if (country != null)

 @neo_countryid = country;

Remarks This example demonstrates the usage of the lookup function, which returns an entity
reference for the provided entity and criteria. It is possible to pass multiple criteria
connected with AND operation.
The usage of the end operation is also demonstrated here: the plugin ends quietly, but
leaves a debug message to Plugin Execution Log record, when “Do Not Log (if
successful)” field is assigned No.

 NEO PLUGIN

 P a g e 26 | 41

Use Case #5

Entity Account

Task This is opposite of task in use case #4. Assume that you need to synchronize the
neo_countryid with address1_country. Update the address1_country, whenever account
is created or neo_countryid is changed. Consider the use case #4 and prevent circular
triggering of plugins #4 and #5 infinitely (would cause a plugin error).

Trigger(s) 1) Synchronous, Post-Operation, On Create
2) Synchronous, Post-Operation, On Update (address1_country)

Execution
Script

countryLookupOld = $neo_countryid.neo_name;

countryLookupNew = @neo_countryid.neo_name;

// check if lookup country has value

if(countryLookupNew == null) { end(); }

// check if lookup country value really changed

if(countryLookupOld == countryLookupNew) { end(); }

countryText = @address1_country;

// check if lookup country is different than country text

if(countryLookupNew == countryText) { end(); }

@address1_country = countryLookupNew;

Execution
Script
(shorter
version)

// check if lookup country has value

// check if lookup country has really changed

// check if lookup country is different than the country text

if(@neo_countryid != null &&

 @neo_countryid.neo_name != null &&

 @neo_countryid != $neo_countryid &&

 @neo_countryid.neo_name != @address1_country)

 @address1_country = @neo_countryid.neo_name;

Remarks

Use Case #6

Entity Case (incident)

Task Set the number of hours passed since case is created, when the case is closed.

Trigger(s) 1) Synchronous, Pre-Operation, On SetStateDynamicEntity

Execution
Script

caseState=@statecode;

if (caseState!=0) { end(); }

createdOn=@createdon;

numberOfHours=round(dateDiff("hour", createdOn, now()), 1);

@neo_numberofhourspassed=numberOfHours;

Remarks datediff function returns difference between two given dates in given terms.

 NEO PLUGIN

 P a g e 27 | 41

Use Case #7

Entity Account

Task Alert territory manager when credit limit is too high (based to revenue)

Trigger(s) 1) Synchronous, Post-Operation, On Update (creditlimit,revenue)

Execution
Script

accountId = @accountid;

revenue = @revenue;

creditLimit = @creditlimit;

if (creditLimit > revenue * 2) {

 runwf("Alert Territory Manager for credit", accountId, false);

}

Remarks The runwf function runs a CRM workflow in the background for the given record. An
active WF with given name should exist in CRM.

Use Case #8

Entity Contact

Task When a contact creditonhold field is set to Yes, we want to set its account creditonhold
field to Yes, as well.

Trigger(s) 1) Asynchronous, Post-Operation, On Create
2) Asynchronous, Post-Operation, On Update (creditonhold)

Execution
Script

if (@parentcustomerid != null && @creditonhold == true) {

 update("account", @parentcustomerid, "creditonhold", true);

}

Remarks The update function updates one or more attributes of an entity record in CRM.

 NEO PLUGIN

 P a g e 28 | 41

Use Case #9

Entity Account

Task Call a web service to lookup account information in D&B. The returned text is an XML. Parse
the XML and use the D&B corrected account name, address, website and phone, if the service
returns a company record with high score

Trigger(s) 1) Synchronous, Pre-Validation, On Create
2) Synchronous, Pre- Validation, On Update (name)

Execution
Script

request = "https://www.neoxrm.com/account/DNBLookup.aspx?"+

 "name=" + htmlEncode(@name) +

 "&country=" + htmlEncode(@address1_country) +

 "&state=" + htmlEncode(@address1_stateorprovince) +

 "&city=" + htmlEncode(@address1_city);

responseXml = callwebservice(request);

resultCount = GetXmlElementCount(responseXml, "response/company");

if (resultCount == 1) {

 score = parseDouble(GetXmlAttribute(responseXml,

 "response/company", "score"));

 if (score > 0.90) {

 @name = GetXmlElementInnerText(responseXml,

 "response/company/name");

 @telephone1 = GetXmlElementInnerText(responseXml,

 "response/company/phone");

 @websiteurl = GetXmlElementInnerText(responseXml,

 "response/company/website");

 @address1_city = GetXmlElementInnerText(responseXml,

 "response/company/address/city");

 @address1_country = GetXmlElementInnerText(responseXml,

 "response/company/address/country");

 @address1_postalcode = GetXmlElementInnerText(responseXml,

 "response/company/address/postalcode");

 @address1_stateorprovince = GetXmlElementInnerText(responseXml,

 "response/company/address/state");

 }

}

Remarks The callwebservice function calls the web service in GET mode and returns the string
returned from web service as response. Build-in XML functions are used to extract data from
XML very easily. This is an example response XML used in this use case:

 <response resultCount='1'>

 <company score='0.99'>

 <id>80627426</id>

 <name>Ozgencil Software LLC</name>

 <phone>1-844-6369761</phone>

 <website>www.neoxrm.com</website>

 <address>

 <country>USA</country>

 <state>NJ</state>

 <city>Mahwah</city>

 <postalcode>07430</postalcode>

 </address>

 </company>

 </response>

 NEO PLUGIN

 P a g e 29 | 41

Use Case #10

Entity Opportunity

Task When opportunity won, create a SalesOrder record out of it.
Also create salesorderdetail records from opportunityproduct list.

Trigger(s) 1) Synchronous, Post- Operation, SetStateDynamicEntity

Execution
Script

if (@statecode != 1) end(); // 1: won.

//if not won, just end the plugin. If won, continue to create sales order

orderId = create("salesorder",

 "name", @name,

 "description", @description,

 "customerid", @customerid,

 "pricelevelid", @pricelevelid,

 "transactioncurrencyid", @transactioncurrencyid,

 "opportunityid", entityRef("opportunity", @opportunityid)

 // add more attribute mappings here in format:

 //"salesorder_attribute", @opportunity_attribute

);

productLineList = getEntityList("<fetch distinct='false' mapping='logical'

output-format='xmlplatform' version='1.0'>

 <entity name='opportunityproduct'>

 <attribute name='extendedamount'/>

 <attribute name='productid'/>

 <attribute name='quantity'/>

 <attribute name='lineitemnumber'/>

 <attribute name='priceperunit'/>

 <attribute name='tax'/>

 <attribute name='transactioncurrencyid'/>

 <attribute name='uomid'/>

 <filter type='and'>

 <condition attribute='opportunityid' operator='eq' value='" +

@opportunityid + "'/>

 </filter>

 </entity>

</fetch>");

foreach(productLine in productLineList) {

 create("salesorderdetail",

 "salesorderid", orderId,

 "quantity", productLine.quantity,

 "productid", productLine.productid,

 "lineitemnumber", productLine.lineitemnumber,

 "priceperunit", productLine.priceperunit,

 "tax", productLine.tax,

 "transactioncurrencyid", productLine.transactioncurrencyid,

 "uomid", productLine.uomid

 // add more mappings here in format:

 //"salesorderdetail_attribute",

productLine.opportunityproduct_attribute

 // be sure to add opportunity product attribute to above fetchXml

);

}

 NEO PLUGIN

 P a g e 30 | 41

Use Case #11

Entity Opportunity Line

Task Set the total of parts and labor in the opportunity, whenever new line is added or an
existing line is updated

Trigger(s) 1) Synchronous, Post-Operation, On Create
2) Synchronous, Post- Operation, On Update (productid, extendedamount)

Execution
Script

fetchXml = "<fetch distinct='false' mapping='logical' output-format='xml-

platform' version='1.0'>

<entity name='opportunityproduct'>

 <attribute name='extendedamount'/>

 <filter type='and'>

 <condition attribute='opportunityid' operator='eq' value='" +

@opportunityid + "'/>

 </filter>

 <link-entity name='product' alias='pr' link-type='outer'

to='productid' from='productid'>

 <attribute name='producttypecode'/>

 </link-entity>

</entity></fetch>";

productLineList = getEntityList(fetchXml);

laborTotal = 0;

partsTotal = 0;

foreach(productLine in productLineList) {

 if (productLine.pr.producttypecode == 1) { // parts

 partsTotal = partsTotal + productLine.extendedamount;

 }

 if (productLine.pr.producttypecode == 3) { // labor

 laborTotal = laborTotal + productLine.extendedamount;

 }

}

if (@opportunityid.neo_labortotal != laborTotal) {

 update("opportunity", @opportunityid, "neo_labortotal", laborTotal);

}

if (@opportunityid.neo_partstotal != partsTotal) {

 update("opportunity", @opportunityid, "neo_partstotal", partsTotal);

}

Remarks Construct the fetchXml and call the getEntityList function. Loop over the returned
entity list using the foreach command. Notice how attributes of the entity record and
linked-entity record are accessed.

 NEO PLUGIN

 P a g e 31 | 41

Use Case #12

Entity Lead

Task Promote a Lead to an Opportunity: Search for contact and account in CRM. If they do
not exist, create new account and contact. Create a new opportunity from the lead. Add
an opportunity product. Close the lead as Qualified.

Trigger(s) 1) Synchronous, Post- Operation, On Update (neo_promote)

Execution
Script

if (@neo_promote != true) end();

contactId = null;

accountId = null;

newContact = false;

if (@contactid != null)

{

 contactId = @contactid;

 if (@contactid.accountid != null)

 {

 accountId = @contactid.accountid;

 }

}

else

{

 contactId = lookup("contact", "emailaddress1", @emailaddress1);

 if (contactId != null)

 {

 trace("contact found with email: " + @emailaddress1);

 contact = retrieve("contact", contactId, "accountid");

 if (contact != null && contact.accountid != null)

 {

 accountId = contact.accountid;

 }

 }

 else

 {

 contactId = create("contact",

 "firstname", @firstname,

 "lastname", @lastname,

 "emailaddress1", @emailaddress1,

 "address1_city", @address1_city,

 "address1_stateorprovince", @address1_stateorprovince,

 "address1_postalcode", @address1_postalcode,

 "address1_country", @address1_country);

 if (contactId != null)

 {

 trace("new contact was created");

 newContact = true;

 }

 else

 {

 trace("new contact cannot be created");

 }

 }

}

if (accountId == null)

{

 if (@parentaccountid != null)

 {

 accountId = @parentaccountid;

 NEO PLUGIN

 P a g e 32 | 41

 }

 else

 {

 accountId = lookup("account",

 "name", @companyname,

 "address1_city", @address1_city);

 if (accountId != null)

 {

 trace("account found with name and city");

 }

 else

 {

 accountId = create("account",

 "name", @companyname,

 "address1_city", @address1_city,

 "address1_stateorprovince", @address1_stateorprovince,

 "address1_postalcode", @address1_postalcode,

 "address1_country", @address1_country);

 if (accountId != null)

 {

 trace("new account was created");

 }

 else

 {

 trace("new account cannot be created");

 }

 }

 }

 if (accountId != null && newContact == true)

 {

 trace("set account of newly created contact1");

 update("contact", contactId, "parentcustomerid", accountId);

 trace("set account of newly created contact2");

 }

}

productId = lookup("product", "name", "Audi A4 Quattro");

if (productId == null)

{

 throw("product not found");

}

product = retrieve("product", productId, "defaultuomid", "pricelevelid");

if (product == null)

{

 throw("product not found2");

}

opportunityId = create("opportunity",

 "customerid", accountId,

 "parentaccountid", accountId,

 "parentcontactid", contactId,

 "pricelevelid", product.pricelevelid,

 "originatingleadid", getCurrentRecord(),

 "name", @subject);

if (opportunityId == null)

 throw("opportunity cannot be created");

setOwner(opportunityId, @ownerid); // assign opportunity owner from lead

opportunityProductId = create("opportunityproduct",

 "opportunityid", opportunityId,

 NEO PLUGIN

 P a g e 33 | 41

 "productid", productId,

 "uomid", product.defaultuomid,

 "quantity", 1.0);

update("lead", getCurrentRecord(),

 "qualifyingopportunityid", opportunityId);

setStateStatus(getCurrentRecord(), 1, 3); // close lead as qualified

 NEO PLUGIN

 P a g e 34 | 41

Use Case #13

Entity Lead

Task Send an email to lead when annual revenue is changed

Trigger(s) 1) Synchronous, Post- Operation, On Update (revenue)

Execution
Script

to = null;

if (@parentcontactid != null)

{

 to = @parentcontactid;

}

else

{

 if (@emailaddress1 != null)

 {

 to = @emailaddress1;

 }

}

emailId = create("email",

 "to", to,

 "from", getCurrentUser(),

 "subject", "This is a test email",

 "regardingobjectid", getCurrentRecord(),

 "description", "<img src='https://www.neoxrm.com/img/logo.png'

/>
<div style='color: #001276; font-size:16px;font-weight:bold;'>

 New Annual Revenue is "+ @transactioncurrencyid.currencysymbol +

 @revenue + "</div>");

addCCRecipient(emailId, "support@neoxrm.com");

sendEmail(emailId);

Remarks Use the create function to create an email in Draft mode. Notice that email body can
be Html content constructed dynamically. Add extra TO, CC or BCC recipients. The
sendEmail function actually sends the email created in Draft mode.

 NEO PLUGIN

 P a g e 35 | 41

IX. Export and Import Neo Plugins
It is always a good practice to have separate development and staging environments, and to make

customizations in development environment, rather than directly making in production environment.

NeoPlugin provides you two different approaches to support this practice.

When you create a new Plugin, you need to select a solution name. After you create the plugin and

publish its triggers, the solution you have selected will be a container for required components to be

able to move your Neo Plugins from one CRM environment to another as a runnable only plugin. When

you export this solution from your development environment, and then import into your production

environment, all Neo Plugins created under this solution will automatically work in the production

environment.

The example NeoPluginTester solution in below contains all required components to be able to run

plugins.

Of course, you need to have a Neo Plugin tool solution installed with a separate license in any

environment you want to work on.

Please note that you cannot directly modify Neo Plugins in production environment, as you do not have

corresponding Neo Plugin records in the production. They exist and run as regular CRM plugins, but they

do not exist as “Neo Plugin”. If you go to Neo Plugins page, you will see no record.

 NEO PLUGIN

 P a g e 36 | 41

If you want to modify plugins directly in your production environment, you need to import them by

using the export/import feature provided in the Neo Plugins page as seen below. Assume that this is our

development environment that we want to export from.

Select the Neo Plugins you want to export, and click on the Export button on the menu. An xml file will

be downloaded into your machine.

 NEO PLUGIN

 P a g e 37 | 41

Go to another Dynamics 365 environment and click on the Import button on the Neo Plugins page. A

small window will open.

 NEO PLUGIN

 P a g e 38 | 41

Click on the Choose File button and select the file you have just exported. Status for each row will say

“Exists As NeoPlugin”, “Exists As Plugin” or “Does not exist”. By importing them, corresponding Neo

Plugin records of the existing plugins will be created.

Check the box for Neo Plugins you want to import and click on the Import button. Neo Plugin records

will be created and then can be modified directly now.

 NEO PLUGIN

 P a g e 39 | 41

 NEO PLUGIN

 P a g e 40 | 41

You can use export/import feature to clone Neo Plugins in the same environment, as well. If a Neo

Plugin already exists in the CRM, and you want to import it again, it will be cloned with a different name.

Its triggers will be left in draft status and you need to publish them, if you want to activate.

 NEO PLUGIN

 P a g e 41 | 41

X. How to Get Support for Neo Plugin

You can always get help for Neo Plugin by contacting to our support team via email at

support@neoxrm.com or via phone 1-844-NEOXRM1.

mailto:support@neoxrm.com

